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Fig. 2. Signal flow graph of cascaded two-ports.

and

a~ = bz, (4)

In the classical waveguide circuit theory, these conditions arise

directly from the continuity of the voltage and current. They are so

fundamental as to be intuitive, and they form the basis of signal flow

graph analysis and indeed of circuit modeling in general. However,

when a and b are Youla’s waves, the boundary conditions (3) and

(4) do not apply. In other words, Youla’s waves are not subject

to signal flow graph analysis. A corollary is that Frickey’s defined

transmission matrices, formed from the scattering parameters using

his Table VI, do notjiirzction as transmission matrices. In other words,

let us denote the transmission matrix of A by T4, that of B by TB,
A~ A functional transmission mat~xand that of the circuit AB by T .

must satisfy the condition that TATB = T-4B. However, algebraic

manipulation of Frickey ’s expressions for the transmission matrix in

terms of voltage-cmi-ent parameters confirms that, for his definitions

T-4TB # T-AB . (5)

Equality in (5) holds true only when the reference impedances on

adjoining ports are complex conjugates, a restriction with numerous

negative implications. This result of the above paper demonstrates

that the counterintuitive nature of Youla’s waves can easily lead to

serious errors.

In the above paper, Frickey compares his results to those of a

commercial simulator. From that comparison, it appears that the

simulator also defines scattering parameters in terms of Youla’s

parameters. This suggests caution in the use of scattering parameters

based on a complex reference impedance.

An alternative to Youla’s theory is the general waveguide circuit

theory of [4], which preserves the essential features of the classi-

cal theory while allowing for complex characteristic and reference

impedances.
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Reply to Comments on “Conversions Between S,

Z, Y, h, ABCD, and T Parameters which are Valid

for Complex Source and Load Impedances”

D. A. Frickey

I would like to thank Mr. Marks and Mr. Williams for pointing

out the error in using the definition of a~ and b~ in the above paperl

as I was unaware of the implications involved. Also, I would like to

thank the authors for bringing to my attention their work m [1].
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Comments on “An Equivalent Transformation

for the Mixed Lumped Lossless ‘I%o-port

and Distributed Transmission Line”

R. Finkler and R. Unbehauen

Stimulated by previous articles [ 1]–[4] by the authors of the above

paper, 1 we have done related research. In doing so, we have found

additional results and synthesis applications ([5]. parts also in [6])

that we would like to communicate here briefly.

In [6] and (more conveniently in [5]) we gave formulas for

the transformation of the D section with l’Hospital’s rule already

incorporated, so that no indefinite expressions such as 0/0 (cf. p. 277,

text between (80) and (81)) occur. According formulas for the other

sections are also given in [5], [6]. These formulas seem to be more

suited for the use in the synthesis applications described below.

The equivalent transformation treated in the Theorem in Section

V of the above paper, which we in accordance to the idiomatic

usage in [1], [2] and due to [7] called extended Levy transformation,

can also be performed numerically. This can be done by solving a

system of ordinary differential equations, where the line length Z is

the independent variable and the coefficients of the numerators of the

lumped lossless two-port chain matrix elements are the functions to

be determined. Reference [5] contains some additional theorems on

the asymptotic behavior of this transformation for 1 - m.
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There exists a related extension of the Richards transformation [8],

leading tothefollowing statement: Animpedanc. Z(j~) (Z(cm)#

O, m), which can berealized asalumped passive one-pofi, can also

be realized as a distributed transmission line of arbitrary length /

terminated in an impedance Z’ (jw) (Z’ (eG) # O, cm) that is also
realizable as a lumped passive one-port. If Z(0) # O, C-O.Z’ (.j~)

tends to a constant ohmic resistance of value Z(O) as 1 + c-c

(otherwise Z’ (jti)/1~” A const with some integer k). Under certain

conditions, the extended Richards transformation can be generalized

for lossy lines.

Both of these extended transformations can be used for the

synthesis of 1) distributed transmission lines and 2) cascades, in

which such lines and lumped lossless two-ports follow one another

alternately. In both cases, the synthesis starts from a lumped reference

network. Case 1 is based upon the fact that in Fig. 4 of the paperl with

W-O (z) = RZ ~ const the properties of the transformed distributed

transmission line with characteristic impedance W’(T) tend to those

of the lumped lossless two-port ~R (reference network) in some

sense as 1 ~ 00.

For case 2. consider the lumped reference network terminated in the

ohmic resistance R2. Now insert a cascade of uniform transmission

lines all with the same characteristic impedance Rz between the

reference network and its terminating resistance. This does not affect

the input impedance and changes the transfer properties (from the

input port of the reference network to the terminals of the resistance)

only by a constant time delay. Then represent the lumped reference

network by a cascade of Darlington sections (and maybe an ideal

transformer).

The final cascade can then be constructed by a multiple application

of the extended Levy transformation. It can be shown that if the zeros

of transmission all occur at real frequencies, and if the lengths of the

lines between the lumped lossless two-ports in the final cascade are

chosen appropriately, transformers, which in general appear in the

lumped reference network, can be avoided.

In both cases, instead of using the extended Levy transformation,

we can also apply the extended Richards transformation (in case 2)

together with the extraction cycles [9] of lumped network synthesis)

to the input impedance of the reference network terminated in Rz.
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Corrections to “TE and TM Modes in

Circularly Shielded Slot Waveguides”

Tsalamengas, I. O. Vardiambasis, and J. G. FikiorisJ. L.

In the above paperl, the following misprints should be corrected:

1)

2)

3)

4)

Just below (15) and just before (28), Xz = – h + ZOt should

read: .rZ = –h + tot”.
~:z)

ln ‘20)’ .(yc I.r – r’ [)
should read: J7~2)( k. I.r – z’ I).

LJm

ln‘27)’.(0’)
should read: 13~ (a ).

In (28), 17$2) [k.12h + w(t – t)l] should read: H$’) [k,12h +

UJ(t – t“)l].
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Corrections to “Experimental Proof-of-Principle

Results on a Mode-Selective Input Coupler”

Jeffrey P. Tate

Upon careful review of the above paper,l two errors were found.

The cutoff frequency for the TEo1 coaxial mode was incorrectly

shown as 13.81 GHz in Fig. 4. The results in Fig. 9(a) and 9(b),

which compare theory and experiment, are also incorrect. The new

figures that should replace them are shown below as Fig. l(a) and

1(b). The figure captions used for Fig. 9(a) and 9(b) are unchanged.

These new graphs correctly illustrate the effect discussed in the text
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