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Fig. 2. Signal flow graph of cascaded two-ports.
and
az = bz. (4)

In the classical waveguide circuit theory, these conditions arise
directly from the continuity of the voltage and current. They are so
fundamental as to be intuitive, and they form the basis of signal flow
graph analysis and indeed of circuit modeling in general. However,
when a and b are Youla's waves, the boundary conditions (3) and
(4) do not apply. In other words, Youla’s waves are not subject
to signal flow graph analysis. A corollary is that Frickey’s defined
transmission matrices, formed from the scattering parameters using
his Table VI, do not function as transmission matrices. In other words,
let us denote the transmission matrix of A by T, that of B by T8,
and that of the circuit AB by 7% A functional transmission matrix
must satisfy the condition that T4TF = 75, However, algebraic
manipulation of Frickey's expressions for the transmission matrix in
terms of voltage-current parameters confirms that, for his definitions

TATB £ TAB, 5)

Equality m (5) holds true only when the reference impedances on
adjoining ports are complex conjugates, a restriction with numerous
negative implications. This result of the above paper demonstrates
that the counterintuitive nature of Youla’s waves can casily lead to
serious errors.

In the above paper, Frickey compares his results to those of a
commercial simulator. From that comparison, it appears that the
simulator also defines scattering parameters in terms of Youla's
parameters. This suggests caution in the use of scattering parameters
based on a complex reference impedance.

An alternative to Youla's theory is the general waveguide circuit
theory of [4]. which preserves the essential features of the classi-
cal theory while allowing for complex characteristic and reference
impedances.
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Reply to Comments on “Conversions Between S,
Z, Y, hy ABCD, and T Parameters which are Valid
for Complex Source and Load Impedances”

D. A. Frickey

I would like to thank Mr. Marks and Mr. Williams for pointing
out the error in using the definition of @, and b, in the above paper’
as I was unaware of the implications involved. Also, I would like to
thank the authors for bringing to my attention their work m [1].

REFERENCES

[11 R. B. Marks and D. F. Williams, “A general waveguide circuit theory,”
J. Res. Natl. Inst. Stand. Technol., vol. 97, pp. 533-561, Sept.-Oct. 1992.

Manuscript received October 12, 1994.

The author is at Idaho Falls. ID 83406 USA.

IEEE Log Number 9408573.

I'D. A. Frickey, IEEE Trans. Microwave Theory Tech., vol. 42, pp. 205-211,
Feb. 1994.

Comments on “An Equivalent Transformation
for the Mixed Lumped Lossless Two-port
and Distributed Transmission Line”

R. Finkler and R. Unbehauen

Stimulated by previous articles [1]-[4] by the authors of the above
paper,’ we have done related research. In doing so, we have found
additional results and synthesis applications ([5]. parts also in [6])
that we would like to communicate here briefly.

In [6] and (more conveniently in [5]) we gave formulas for
the transformation of the D section with 1'Hospital’s rule already
incorporated, so that no indefinite expressions such as 0/0 (cf. p. 277,
text between (80) and (81)) occur. According formulas for the other
sections are also given in [5], [6]. These formulas seem to be more
suited for the use in the synthesis applications described below.

The equivalent transformation treated in the Theorem in Section
V of the above paper, which we in accordance to the idiomatic
usage in [1], [2] and due to [7] called extended Levy transformation,
can also be performed numerically. This can be done by solving a
system of ordinary differential equations, where the line length [ is
the independent variable and the coefficients of the numerators of the
Iumped lossless two-port chain matrix elements are the functions to
be determined. Reference {5] contains some additional theorems on
the asymptotic behavior of this transformation for I — oc.
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There exists a related extension of the Richards transformation [8],
leading to the following statement: An impedance Z(jw) (Z(c0) #
0, cc), which can be realized as a lumped passive one-port, can also
be realized as a distributed transmission line of arbitrary length [
terminated in an impedance Z'(jw) (Z'(oc) # 0, co) that is also
realizable as a lumped passive one-port. If Z(0) # 0, co, Z'(jw)
tends to a constant ohmic resistance of value Z(0) as | — oo
(otherwise Z'(jw)/I* — const with some integer %). Under certain
conditions, the extended Richards transformation can be generalized
for lossy lines.

Both of these extended transformations can be used for the
synthesis of 1) distributed transmission lines and 2) cascades, in
which such lines and lumped lossless two-ports follow one another
alternately. In both cases, the synthesis starts from a lumped reference
network. Case 1 is based upon the fact that in Fig. 4 of the paper! with
Wo(z) = Ro = const the properties of the transformed distributed
transmission line with characteristic impedance W (r) tend to those
of the lumped lossless two-port N (reference network) in some
sense as | — oo.

For case 2, consider the lumped reference network terminated in the
ohmic resistance F». Now insert a cascade of uniform transmission
lines all with the same characteristic impedance R2 between the
reference network and its terminating resistance. This does not affect
the input impedance and changes the transfer properties (from the
input port of the reference network to the terminals of the resistance)
only by a constant time delay. Then represent the lumped reference
network by a cascade of Darlington sections (and maybe an ideal
transformer).

The final cascade can then be constructed by a multiple application
of the extended Levy transformation. It can be shown that if the zeros
of transmission all occur at real frequencies, and if the lengths of the
lines between the lumped lossless two-ports in the final cascade are
chosen appropriately, transformers, which in general appear in the
lumped reference network, can be avoided.

In both cases, instead of using the extended Levy transformation,
we can also apply the extended Richards transformation (in case 2)
together with the extraction cycles [9] of lumped network synthesis)
to the input impedance of the reference network terminated in R.
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Corrections to “TE and TM Modes in
Circularly Shielded Slot Waveguides”

J. L. Tsalamengas, 1. O. Vardiambasis, and J. G. Fikioris

In the above paper’, the following misprints should be corrected:
1} Just below (15) and just before (28), x2 = —h + wt should
read: 22 =_—h + wt’.

(2)
2) In (20), ~(l3 e — 2']) should read: HéQ)(kclr - r').

3) In (27), B should read: B,.(a).

()
4y n (28), HV[k.|2h + w(t — t)|] should read: HY [k|2h +
w(t —t")[].
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Corrections to “Experimental Proof-of-Principle
Results on a Mode-Selective Input Coupler”’

Jeffrey P. Tate

Upon careful review of the above paper,’ two errors were found.
The cutoff frequency for the TEg; coaxial mode was incorrectly
shown as 13.81 GHz in Fig. 4. The results in Fig. 9(a) and 9(b),
which compare theory and experiment, are also incorrect. The new
figures that should replace them are shown below as Fig. 1(a) and
1(b). The figure captions used for Fig. 9(a) and 9(b) are unchanged.
These new graphs correctly illustrate the effect discussed in the text
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